Fully funded PhD studentship (University of Plymouth): Improving navigation by modulating sensitivity to environmental cues

Applications are invited for a four-year PhD studentship. The studentship will start on October 1st 2017 (deadline for applications: Monday 17th July 2017)

Project Description:

This prestigious ICASE studentship is funded by the EPSRC, with DSTL as an industrial partner. The project will explore individual differences underlying navigational abilities and investigate methods to strategically improve everyday skills. Initial studies will focus on assessing the conditions under which the behaviours that support navigation are subject to enhancement by application of non-invasive and reversible brain stimulation (tDCS). This will be tested using a combination of simulated and real-world environments. Neuromodulation will be compared to cognitive interventions that are targeted to the individual. The student will acquire a representative cross-section of the cognitive underpinnings of daily navigational abilities and then design strategic techniques that focus on improving specific behaviours. The studentship will be supervised by Dr Alastair D. Smith, who is joining the University of Plymouth in summer 2017, and will be based in the School of Psychology. The successful applicant will be fully trained in all methodological components of the project, including world-class environmental simulation facilities. The student will also benefit from research placements to DSTL laboratories and Imperial College London. These additional experiences will not only provide a very competitive range of skills to apply to the project, but they will also represent useful academic and industrial avenues to follow after the completion of the PhD work.

Informal enquiries can be made to Dr Smith (current contact details: Alastair.Smith@nottingham.ac.uk). Fuller details and instructions for application can be found at the following link: http://www.jobs.ac.uk/job/BBX919/phd-studentship-improving-navigation-by-modulating-sensitivity-to-environmental-cues/